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In the eighties, Miquel and Fleming suggested that 
mitochondria play a key role in cellular aging. Mito- 
chondria, and specially mitochondrial DNA (mtDNA), 
are major targets of free radical attack. At present, it is 
well established that mitochondrial deficits accumulate 
upon aging due to oxidative damage. Thus, oxidative 
lesions to mtDNA accumulate with age in human and 
rodent tissues. Furthermore, levels of oxidative dam- 
age to mtDNA are several times higher than those of 
nuclear DNA. Mitochondrial size increases whereas 
mitochondrial membrane potential decreases with age 
in brain and liven 

Recently, we have shown that treatment with certain 
antioxidants, such as sulphur-containing antioxidants, 
vitamins C and E or the Ginkgo biloba extract EGb 761, 
protects against the age-associated oxidative damage to 
mtDNA and oxidation of mitochondrial glutathione. 
Moreover, the extract EGb 761 also prevents changes 
in mitochondrial morphology and function associated 
with aging of the brain and liver. Thus, mitochondrial 
aging may be prevented by antioxidants. Furthermore, 
late onset administration of certain antioxidants is also 
able to prevent the impairment in physiological perfor- 
mance, particularly motor co-ordination, that occurs 
upon aging. 

Keywords: Mitochondrial DNA, glutathione, 
lipid peroxidation, Ginkgo biloba 

1. THE FREE RADICAL THEORY OF 
AGING AND THE M I T O C H O N D R I A L  
THEORY OF A G I N G  

One of the most  relevant theories raised to explain 
aging is the free radical theory of aging, which was 
first proposed  by Harman  forty years ago. Ill 

According to this theory, oxygen-der ived free 
radicals are responsible for the age-associated 
impai rment  at the cellular and tissue levels. The 
free radical theory of aging assumes that cellular 
aging is associated with oxidative stress, which 
was defined by Sies as a disturbance in the balance 
between pro-oxidants and antioxidants, in favor 
of the former. [21 

A great deal of experimental  evidence supports  
the free radical theory of aging, especially the 
extension of life span obtained by increasing the 
antioxidant defense and the involvement  of 
reactive oxygen species (ROS) in age-associated 
degenerat ive diseases. E3-61 Thus, administrat ion 

of antioxidants can increase the mean lifespan 
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of flies.[7'8] Orr and Sohal have recently found that 
simultaneous overexpression of copper-zinc 
superoxide dismutase and catalase genes in trans- 
genic Drosophila extends their mean and maxi- 
mum life span. Furthermore, these transgenic 
flies exhibited a delayed loss of physical perfor- 
mance and a lower amount of protein oxidative 
damage. [91 

Age-related declines of cognitive function and 
motor skills are associated with oxidative pro- 
tein damage within different regions of the brain 
and oxidative stress in brain mitochondria. [l°'m 
Moreover, administration of the spin-trapping 
agent N-tert-butyl-ct-phenylnitrone [121 or diet- 
ary restriction ~131 decreased the oxidative dam- 
age to protein in the brain of rodents with a 
concurrent improvement in age-related behav- 
ioral deficits. 

Oxygen free radicals and peroxides are gener- 
ated continuously in the mitochondrial respira- 
tory chain. [14"15J Indeed, about 1-2% of oxygen 
used by mammalian mitochondria in state 4 does 
not form water but oxygen-activated species. [14'151 

On this basis, Miquel and coworkers proposed 
the mitochondrial theory of cell aging. [161 This 
theory suggests that senescence is a by-product 
of oxy-radical attack to the mitochondrial genome 
of fixed postmitotic cells. ~161 Mitochondria from 
postmitotic cells use 02 at a high rate, hence 
releasing oxygen radicals which exceed the cellu- 
lar antioxidant defence. [171 The role of old mito- 
chondria in cell aging has been outlined by the 
degeneration induced in cells microinjected 
with mitochondria isolated from fibroblasts of 
old rats. [181 

2. M I T O C H O N D R I A L  P R O D U C T I O N  OF 
REACTIVE OXYGEN SPECIES AS A 
D E T E R M I N A N T  OF M A X I M U M  
LIFE SPAN 

At the beginning of this century, Rubner pointed 
out the inverse relationship between the rate 
of oxygen consumption and the maximum life 

span of species. Much later, Harman suggested 
that mitochondria might be the biological clock 
in aging since the rate of oxygen consumption 
should determine the rate of accumulation of 
mitochondrial damage produced by free radical 
reactions. 1191 Rubner's theory explains the differ- 
ences in maximal life span potential among 
numerous but not all species. Exceptions to this 
theory are birds and primates, who exhibit at the 
same time high oxygen consumption and high 
longevity. [2°1 The explanation for this paradox is 
that mitochondrial production of ROS is not 
proportional to oxygen consumption. 114'2°'211 

ROS production by mitochondria is lower in 
pigeon than in rat, whereas oxygen consumption 
is higher in pigeon than in rat. [2°-221 Thus, 
mitochondria from birds use oxygen more effi- 
ciently and exhibit less free radical leak through 
the respiratory chain. Studying up to five species, 
Sohal and coworkers found that mitochondria 
from shorter-lived species produce relatively 
higher amounts of ROS than those from the 
longer-lived species. [23-25! Hence, the rate of ROS 
production, and not merely the rate of oxygen 
consumption, appears to determine the maximal 
life span potential. 

3. M I T O C H O N D R I A L  A G I N G  AS A 
MODEL OF C H R O N I C  OXIDATIVE 
STRESS 

The continuous generation of ROS by mitochon- 
dria throughout cell life produces an age-related 
"chronic" oxidative stress which plays a key role 
in cellular aging (see Figure 1). A number of stud- 
ies have shown that oxidative damage to mito- 
chondrial DNA (mtDNA), proteins and lipids 
occurs upon aging. 126-3°] 

DNA damage has been observed in a wide 
range of mammalian cell types exposed to oxi- 
dative stress. [31] This damage includes single and 
double strand breaks, deletions, base changes, 
oxidative damage and even chromosomal aberra- 
tions. The major molecular mechanisms involved 
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02-" GENERATION 

BY MITOCHONDRIA 

Haber-Weiss or 
Fenton reaction 

l ,L 
ONOO- 

GLUTATH1ONE OXIDATION AND 

OXIDATIVE DAMAGE TO MITOCHONDRIAL 

DNA, LIPIDS AND PROTEINS 

MITOCHONDRIAL AGING 

,L 
CELL AGING 

FIGURE 1 Mitochondrial aging as a model of chronic 
dative stress. 

oxi- 

are direct reaction of hydroxyl radicals and 
carbonyl compounds with DNA and activation 
of nucleases. [31] Superoxide and H 2 0  2 do not 
react with DNA unless transition metal ions 
are present to allow hydroxyl radical formation. 
The hydroxyl radical may attack deoxyribose, 
purines and pyrimidines, giving rise to numerous 
products. ]31] 

Mitochondrial DNA is specially susceptible to 
oxidative damage and mutation because it lacks 
protective histones [321 and is close to the ROS 
generated continuously by mitochondria. Indeed, 
levels of oxidative damage to mtDNA are several 
times higher than those of nuclear DNA, and 
mtDNA mutates several times more frequently 
than nuclear D N A .  [26"33'34] Moreover, Suter and 

Richter have recently reported that oxidized bases 
are present to a moderate extent in the 16.3kb 
mtDNA molecules but in high levels - around 50 
times the value of nuclear DNA - in the mtDNA 
fragments. ]34] These results together with the 
finding of mitochondrial oxidative damage endo- 
nucleases demonstrate the existence of a mtDNA 
repair system. [34-36] 

Oxidative lesions of mtDNA accumulate with 
age in human and rodent t i s s u e s .  [28'31'37'38] Thus, 

the mtDNA repair system cannot cope with the 
ROS generated throughout cell life in mitochon- 
dria. Point mutations and deletions in mtDNA 
occur in tissues from old animals. I39M21 Further- 
more, point mutations and aberrant forms in 
mtDNA of postmitotic cells are associated with 
age-related degenerative diseases. [43'44] The 
impairment of mtDNA may affect transcription 
of mitochondrial genes. [481 Indeed, an age-related 
decrease in the levels of mitochondrial transcripts 
in some rat tissues and in Drosophila have 
been reported. I46'471 Furthermore, since mtDNA 

has no introns, any mutation affects a coding 
DNA sequence. [321 Thus, it was suggested that 
mtDNA mutations may be important contri- 
butors to aging and neurodegenerative 
diseases. [17,33,48] 

Recently, we have found that oxidative damage 
to mtDNA is several times higher in brain than in 
liver, both in young and in old animals. [3°1 Hence, 
it appears that brain mitochondria are more 
exposed to oxidative stress than liver mito- 
chondria. This increased oxidative stress may 
contribute to the well-known fact that neu- 
rons suffer more impairment upon aging than 
hepatocytes. 

Mitochondrial reduced glutathione (GSH) 
plays a key role in the protection against the oxi- 
dative damage to mtDNA. Indeed, the oxidative 
damage to mtDNA which occurs upon aging is 
directly related to an oxidation of mitochondrial 
glutathione. [28] Glutathione oxidation increases 
with age in mitochondria from liver, kidney 
and brain of rats. [28] It is worth noting that this 
increase was much higher in mitochondria than 
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in whole cells. These results support the idea that 
mitochondria are a major source of free radicals 
i n  aging [16'21'24"491 and emphasize the relevance 

of mitochondria as primary targets of damage 
associated with aging. I16] 

A change in the GSH redox status would 
indicate that mitochondrial antioxidant systems 
cannot cope with the oxidant species generated 
throughout the cell life. Therefore, GSH oxida- 
tion may occur prior to oxidative damage to other 
mitochondrial components, and it might be an 
early event in the chronic oxidative stress asso- 
ciated with mitochondrial aging. This points out 
the importance of maintaining an adequate GSH 
status to protect cells against oxidative damage 
of important molecules such as DNA. 

The role of protein damage in cell aging became 
apparent when it was found that catalytically less 
active or inactive forms of some enzymes 
accumulate during aging. [5°-521 Post-translational 
modifications seem to be responsible for this 
accumulation of inactive proteins. [531 Most of 
these modifications may be due to oxygen 
radical-mediated oxidation of enzymes, which is 
a marking step in protein turnover. [54-56] Oxida- 
tive damage appears to occur selectively in 
certain mitochondrial proteins. Thus, it has been 
reported recently that mitochondrial aconitase, 
an enzyme of the citric acid cycle, is a specific 
target of oxidative damage during aging of 
houseflies. I571 

Regarding peroxidation of mitochondriaI lipids 
upon aging, part of it appears to be due to changes 
in membrane lipid composition which enhance its 
susceptibility to oxidative damage. [261 Thus, a 
progressive decline in the amount of linoleic acid 
together with an increase in the amount of long- 
chain polyunsaturated fatty acids, which are more 
sensitive to oxidation, was reported. I26'581 Further- 
more, the rate of the aging process may depend on 
the sensitivity of mitochondrial lipids to oxida- 
tive damage. Thus, the fatty acids analysis of liver 
mitochondcia from eight mammalian species has 
revealed that the total number of double bonds 
and the peroxidizability index of mitochondrial 

membrane lipids are inversely correlated with 
maximum life span. [s91 

An important change in mitochondrial lipid 
composition is the age-related decrease found in 
cardiolipin content. Indeed, it decreases with age 
in heart, liver and nonsynaptic brain mitochon- 
dria. [6°-62[ Since cardiolipin is required for opti- 
mal catalytic activity of inner mitochondrial 
enzymes, [631 modifications in cardiolipin compo- 
sition may be involved in age-related changes of 
certain activities, such as those of the respiratory 
chain. [26,621 

As pointed out recently by Wei, I64] a vicious 
cycle would operate in mitochondria upon aging. 
The concurrent enhancement of lipid peroxi- 
dation and oxidative modification of proteins in 
mitochondria further increases mutations and 
oxidative damage to mtDNA in the aging pro- 
c e s s .  [641 The respiratory enzymes containing 
the defective mtDNA-encoded protein subunits 
may increase the ROS production, which in 
turn would aggravate the oxidative damage to 
mitochondria. I641 

On the other hand, superoxide radical pro- 
duced during mitochondrial respiration reacts 
inside mitochondria with nitric oxide to yield 
damaging peroxynitrite.[65"66] Furthermore, mito- 
chondria are a source of NO, which may increase 
superoxide radical and hydrogen peroxide for- 
mation by mitochondria. I671 Future research is 
needed to elucidate the role of mitochondrial 
nitric oxide and peroxynitrite in the age- 
associated oxidative stress. 

4. OXIDATIVE STRESS CAUSES 
CHANGES IN MITOCHONDRIAL 
FUNCTION A N D  MORPHOLOGY 
UPON AGING 

Oxidative stress may be responsible for age- 
associated deficits in mitochondrial function as 
well as changes in mitochondrial morphol- 
ogy, [26"30] and experimental evidence supports 
this hypothesis, as explained below. 
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MITOCHONDRIAL OXIDATIVE STRESS IN AGING 193 

Age-related decreases in membrane potential 
of brain and liver mitochondria have been 
reported. I29'3°'68] This may reduce the energy 
supply in old cells since the mitochondrial mem- 
brane potential is the driving force for ATP 
synthesis. 

An acute oxidative stress causes an inhibition 
of mitochondrial respiration, [691 which affects the 
mitochondrial membrane potential. Moreover, 
hyperoxia reduces the mitochondrial membrane 
potential in microvascular cells. I7°] Hence, the 
oxidative stress associated with aging may be 
responsible, at least in part, for the age-related 
impairment in mitochondrial membrane poten- 
tial and respiratory activity. Indeed, intracellular 
peroxide levels increase with age in whole 
cells, [29'68] which correlates with parallel changes 
in peroxide generation by isolated mitochon- 
dria. [29'3°'71] It is likely that the accumulation of 
peroxides in whole cells upon aging comes from 
the continuous peroxide generation by mitochon- 
dria throughout the cell life, although we cannot 
rule out that other structures, such as peroxi- 
somes, may also have a role. 

On the other hand, mitochondrial morphology 
is important because changes in mitochondrial 
ultrastructure modulate mitochondrial func- 
tion. [72] Indeed, volume-dependent regulation of 
matrix protein packing modulates metabolite dif- 
fusion and, in turn, mitochondrial metabolism.j72] 
Enlargement, matrix vacuolization and altered 
cristae have been evidenced in mitochondria from 
old animals by electron microscopy and flow 
cytometry. [29"3°'73"74] Alterations of mitochondrial 

crests which occur in old mitochondria may be 
responsible for the age-related impairment in 
mitochondrial membrane potential that we have 
found. 

It is well known that acute oxidative stress 
causes mitochondrial swelling. [751 Thus, age- 
associated chronic oxidative stress may be the 
cause, at least in part, of mitochondrial swelling. 
Furthermore, a correlation between changes in 
mitochondrial morphology and function seems 
to occur upon aging. 

Several studies have shown a decline in activ- 
ities of complexes I, II and especially IV. I27] 

Moreover, the respiratory activity of isolated 
mitochondria decreases with age in liver, skeletal 
muscle and brain. [76-78] Age-related decreases 
in the activities of mitochondrial anion carrier 
proteins - such as the phosphate carrier and 
ATP/ADP translocation in liver mitochon- 
dria [79'8°1 and Ca ++, adenine nucleotide and pyru- 
vate carriers in heart mitochondria [6°'8~-84] _ have 
also been reported. 

We studied biochemical pathways which 
depend on mitochondrial function in isolated 
hepatocytes and found that gluconeogenesis from 
lactate plus pyruvate, but not from glycerol or fruc- 
tose, decreases upon aging. I291 Gluconeogenesis 
from lactate involves mitochondria, whereas from 
glycerol or fructose it does not. The lower rate of 
gluconeogenesis from lactate plus pyruvate is due 
to an impaired transport of malate across mito- 
chondrial membrane using the dicarboxylate 
carrier. [29] Furthermore, post-transcriptional 
modifications appear to be involved in the age- 
related impairment of such carrier, since its gene 
expression does not change with age. [291 

Nevertheless, the fact that the respiratory activ- 
ity and some mitochondrial carriers are impaired 
upon aging does not necessarily mean that all 
mitochondrial functions are affected by aging. 
Thus, the rate of urea synthesis in hepatocytes 
does not change with age. [29] 

An increased generation of oxygen free radicals 
may be responsible for the decline in the activity of 
mitochondrial membrane proteins, such as meta- 
bolite carriers and respiratory chain complexes. In 
fact, it is known that exposure of mitochondria to 
free radicals causes impairment of the mitochon- 
drial inner-membrane proteins [751 and an inhibi- 
tion of mitochondrial respiration. [~8] 

Damage to mitochondrial electron transport 
may be an important factor in the pathogenesis of 
neurodegenerative diseases, such as Parkinson's 
disease, Alzheimer's disease and amyotrophic 
lateral sclerosis. [ssl Activation of excitatory amino 
acid receptors causes enhanced NO and 
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superoxide production, which can lead to the 
generation of peroxynitrite, f86-881 It is suggested 
that NO and specially peroxynitrite mediate 
mitochondrial damage in neurodegenerative dis- 
orders, since they can inhibit components of the 
neuronal mitochondrial respiratory chain. 185'sgj 

ROS and NO are important physiological 
modulators of mitochondrial functions, but may 
damage mitochondria when present in excessive 
amounts. 19°'911 Nitric oxide inhibits respiration 
reversibly at cytochrome c oxidase, [92"93] but 
peroxynitrite inhibits irreversibly at complexes 
I-III I94] and also at cytochrome oxidase. [95] Per- 
oxynitrite would be the reactive intermediate 
accounting for nitric oxide-dependent inactiva- 
tion of electron transport components and ATPase 
in living cells and tissues. [961 Further research is 
needed to clarify the role of peroxynitrite on 
mitochondrial aging, specially on the age-related 
decrease in cytochrome oxidase activity. 

Mitochondria are mediators of apoptosis. 
Mitochondria are at the same time the target and 
the source of oxidative stress, nitric oxide and 
Ca2+. [97] Mitochondrial dysfunction induced by 
superoxide, NO and the consequent peroxynitrite 
production play a key role in neuronal apop- 
tosis or neurotoxicity induced by several 
insults. [66"86"92"9s'99] Indeed, cytochrome c release 

by mitochondria is involved in NO-induced neu- 
ronal apoptosis I1°°1 and prevention of mitochon- 
drial permeability transition by cyclosporine A 
protected cells against apoptosis induced by 
amyloid fl-peptide or nitric oxide-generating 
agents. ~66~ Exposure to the parkinsonian neuro- 
toxin 1-methyl-4-phenylpyridium (MPP+) and 
nitric oxide simultaneously causes cyclosporin 
A-sensitive mitochondrial calcium effiux and 
depolarization. I1°11 Thus, nitric oxide may induce 
apoptosis via triggering mitochondrial perme- 
ability transition in several cell types, such as 
neurons and myeloid cells. [1°2'1°31 Neuronal 
apoptosis induced by amyloid fl-peptide or NO 
was prevented by antioxidants, such as GSH or 
overexpression of mitochondria-localized man- 
ganese superoxide dismutase. [661 

5. ANTIOXIDANTS PREVENT 
AGE-ASSOCIATED MITOCHONDRIAL 
OXIDATIVE STRESS 

The free radical theory of aging proposed by 
Harman Ill is specially attractive because it pro- 
vides a rationale for intervention, i.e. antioxidant 
administration may slow the aging process. In 
1979, Miquel and Economos were the first to show 
that administration of thiazolidine carboxylate 
increases the vitality and life span of mice.[7l Later, 
Furukawa et al. [1°41 reported that oral administra- 
tion of GSH protects against the age-associated 
decline in immune responsiveness. More recently, 
we found that administration of some sulphur- 
containing antioxidants protects against the age- 
associated GSH depletion in mouse tissues as well 
as partially prevented the age-related decline 
in neuromuscular co-ordination.I8J These antioxi- 
dants also increased the mean life span of 
Drosophila. I81 

Recently, we have investigated the protective 
effect of a standardized extract from dried leaves 
of Ginkgo biloba (EGb 761) on the age-associated 
oxidative damage to mtDNA. I3°1 EGb 761 is a 
mixture of flavonoids, heterosides and ter- 
penes. II°sl The antioxidant action of this Ginkgo 
biloba extract is due to its components, the flavonol 
glycosides, which are known for scavenging sup- 
eroxide anions as well as hydroxyl and peroxyl 
radicals. I1°6'1°71 Flavonoids also prevent lipid 
peroxidation in the membranes, especially due 
to their ability to interact with and penetrate the 
lipid bilayers. E~°sl 

Oral administration of EGb 761 to rats for three 
months is able to prevent the oxidative damage 
to mtDNA that occurs in liver and brain upon 
aging. I3°l Treatment with EGb 761 also protects 
against the oxidation of mitochondrial GSH and 
the age-related increase in peroxide generation 
by mitochondria. I3°1 Hence, EGb 761 prevents the 
chronic oxidative stress associated with mito- 
chondrial aging in rats. 

In addition, treatment with EGb 761 prevented 
age-associated impairments in mitochondrial 
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morphology and respiratory function. Indeed, 
this treatment prevented the changes in size and 
structural complexity that occurs in brain and 
liver mitochondria upon aging. [3°] 

Moreover, it prevents the decrease in energy 
status under state 4 that occurs in liver and brain 
mitochondria from old rats. [3°] Our results sug- 
gest that EGb 761 exhibits beneficial effects on 
mitochondrial aging by preventing the chronic 
oxidative stress associated with this process. 

We have also found that certain antioxidants, 
such as thiazolidine carboxylate derivatives or 
vitamins C and E, protect against mitochondrial 
GSH oxidation and mtDNA oxidative damage 
associated with aging. [281 Moreover, late onset 
administration of certain sulphur-containing 
antioxidants, such as GSH or a thiazolidine 
carboxylate derivative, is able to prevent not only 
the age-related oxidative damage to mtDNA in 
brain, but also the impairment in physiological 
performance, particularly motor co-ordination, 
that occurs upon aging. [11] Thus, we found an 
inverse relationship between motor co-ordination 
and oxidative damage to brain mtDNA in mice. To 
pursue studies in humans, the practical impor- 
tance of an effective antioxidant treatment which 
started late in life should be emphasized. 

The facts reported here underline the role of 
oxidative stress, and particularly oxidative dam- 
age to mtDNA, in aging at tissue and whole 
organism levels. Hence, experimental evidences 
again give support to Miquel's hypothesis of the 
key role of mitochondrial oxidative damage in the 
aging process [171 as well as to Sohal's hypothesis 
of the rate of pro-oxidant generation as a key 
factor in the rate of aging. [24] 

In conclusion, administration of certain anti- 
oxidants - such as GSH, thiazolidine carboxylate 
derivatives, vitamins C and E or the Ginkgo biloba 
extract EGb 761 - may prevent or delay the 
oxidative stress and the physiological impairment 
associated with aging. Nevertheless, further stud- 
ies on dietary supplementation with antioxidants 
need to be carried out, especially epidemiological 
studies. 
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